当前位置:首页 > 热点 > 从简单的整数到神秘的虚数,这些数的类型你必须搞懂!

从简单的整数到神秘的虚数,这些数的类型你必须搞懂!

2025-12-28 00:17:35 [知识] 来源:宿迁市某某洗涤用品业务部

数的从简世界:从简单到复杂的奇妙探险

你有没有想过,数是单的到神什么?

从小学开始,我们就被告知有 0, 1, 2, 3这些自然数,整数杭州市某某自动化科技服务中心之后又认识了 负数分数,虚数接着又跳进了 无理数的类型大海,在高中的必须某个时刻还初识了更神秘的 虚数

数的搞懂世界就像是一个庞大的家族,有各种各样的从简“成员”,它们各自扮演着不同的单的到神角色。那么,整数今天我们就来一次有趣的虚数“数之世界”探险,看看它们是类型如何从简单到复杂,逐步构成数学的必须奇妙世界的。



自然数:数的搞懂杭州市某某自动化科技服务中心起点

从最简单、最熟悉的从简自然数开始,即我们平时用来数东西的数:0, 1, 2, 3, 4, 5...。

自然数的一个重要特点是,它们永远不会是负数:在自然数家族里,大家都是积极向上的小伙伴。

自然数帮助我们理解最朴素的“计数”,是数学的起点。

整数:有了“冷酷”的负数

然而,生活并不会一直阳光明媚,我们会遇到零下摄氏度或银行账户里显示的“负余额”:信用卡透支或房贷(提到这个话题,笔者心里总是沉甸甸滴~)。

为了描述这种现象,我们引入了 整数。整数不仅包括正数,还包括 负数,以及它们之间的平衡者——0。因此,整数的完整集合是:

ℤ = { …, -3, -2, -1, 0, 1, 2, 3, …}

整数不仅帮助描述正向的世界,也让我们理解“负面”的现象。

有理数:分配的艺术



当我们学会把一个苹果分给两个人时,有理数就应运而生了。

有理数是可以表示为两个整数之比(即分数)的数,形式如下: a/b,其中 a, b ∈ ℤ, b ≠ 0

(我们没法把苹果分给“0”个人,所以分母不能为零,不然数学家真的会抓狂)。

  • 除以 0 没有意义:如果分母为 0,无法找到任何数乘以 0 得到非零的结果,这样就会导致数学上的矛盾。

有理数,比如 1/3, 355/106, -2/3,甚至整数本身也是有理数,因为它们总是可以写成 n/1 的形式。

有理数的作用无处不在,但凡涉及“分配”或者“比例”,它们就会闪亮登场。

实数:无理数的加入

有理数家族已经够庞大了,但你以为这就是全部了?不不不,欢迎来到更广阔的实数世界!实数不仅包括有理数,还包括那些无法用分数表示的“神奇数”——无理数



无理数的名字听起来有点“无理取闹”。要知道,古希腊毕达哥拉斯学派坚信,所有的事物都可以用整数或整数之比来表达:世界应当是整洁、有理且可以度量的。

不过其中一位成员希帕索斯在研究边长为 1 的等腰直角三角形的斜边长度时,发现结果竟然是 √2。他尝试用整数或分数来表达这个结果,可失败了——它无法用两个整数的比来表示,它的小数部分是无限不循环的,比如 √2 = 1.414213562373095...



就这样一直延续下去,还永远找不到重复的规律。

常见的无理数还包括:π(圆周率)、e(自然对数的底数)、φ(黄金分割比)、√3 等。

因此,实数包括了所有的有理数和无理数,形象地说,实数就是数轴上所有的点,从左到右,无穷无尽。



代数数 vs. 超越数:谁更高深?

接下来,会遇到了两个稍微抽象的概念:代数数超越数

代数数是那些能够成为某个整数系数多项式方程解的数。比如,3x² - 9x + 6 = 0 的解是 x = 1 和 x = 2,因此它们两个是代数数。

代数数不仅包括有理数,还包括一些无理数。比如,√2 就是方程 x² - 2 = 0 的解,φ 是方程 x² - x - 1 = 0 的解,所以它们也都是代数数的一员。

但并不是所有的数都能被整数系数多项式方程“驯服”。有些数,无论你如何组合整数系数的多项式,它们都不会成为解。这些数被称为超越数。

最著名的例子就是 π 和 e。无论你怎么组合整系数的多项式,它们就是不愿意成为方程的解。

复数:虚数和实数的完美结合

你以为故事就到这里结束了?不,欢迎来到 复数的世界。复数是由一个实数部分和一个虚数部分组成的,形式为 a + b,其中 是虚数单位,也是方程 x² + 1 = 0 的解—— 也是一个代数数。



虚数听起来有点像魔法,但它们非常实用,特别是在物理学、电力学和工程中有广泛的应用。通过复数,人们可以处理那些仅用实数无法解决的问题。

数的世界远不止于此

数的世界远不止这些,还有许多更高级的数系等待探索。

比如,四元数八元数扩展了复数,帮助人们处理三维和更高维的旋转问题;p 进数则在数论中扮演着重要角色,它通过质数的视角重新定义了“距离”,并为数论中的整除性和同余问题提供了强有力的工具。还有 超复数,如 双曲数双数,它们在物理和工程中有着特殊的应用,尤其是在处理时空几何和自动微分问题时。如果你认为无穷小只是微积分中的抽象概念,那么 超实数将颠覆你的想法,它们让无穷小和无穷大的操作变得严格且可行。

每一种数系都是理解世界的钥匙。而你我,正站在这条通向无限的道路上,保持好奇心,勇敢追寻!

(责任编辑:综合)

推荐文章
  • 外媒:普京称,乌克兰武装部队几乎已耗尽战略储备

    外媒:普京称,乌克兰武装部队几乎已耗尽战略储备   [环球网快讯]19日,俄罗斯总统普京在莫斯科举行2025年度记者会。据俄罗斯卫星通讯社报道,普京在记者会上表示,乌克兰武装部队几乎已耗尽战略储备。当地时间19日,普京在莫斯科举行2025年度记者会 ...[详细]
  • 四川一罪犯4年怀孕产子3次!被质疑“逃避坐牢”

    四川一罪犯4年怀孕产子3次!被质疑“逃避坐牢”   来源:正在新闻   11月16日,宜宾市翠屏区人民法院张贴一则《公示》流传网络。  《公示》显示,女子邱某犯运输毒品罪,2020年6月29日被公安机关抓获,7月2日被刑事拘留。  同年, 8月3日 ...[详细]
  • 前10个月新疆接待游客超2.7亿人次 同比增长14.42%

    前10个月新疆接待游客超2.7亿人次 同比增长14.42% 来源:石榴云/新疆日报石榴云/新疆日报讯记者 姚刚报道)11月15日,记者从自治区文化和旅游厅获悉:今年前10个月,全区累计接待国内外游客超2.7亿人次,同比增长14.42%;实现旅游收入超过3200 ...[详细]
  • 东航“亚冬号”宽体彩绘机成功首航

    东航“亚冬号”宽体彩绘机成功首航   新京报讯 据中国东方航空消息,11月16日,中国东航第二架“亚冬号”主题彩绘机正式亮相,作为哈尔滨亚冬会官方航空服务合作伙伴,开启这架A330宽体彩绘机的“亚冬空中大使”全球首航之旅。  此次首航 ...[详细]
  • 商务部召开外贸企业圆桌会

    商务部召开外贸企业圆桌会   12月23日,商务部部长助理张力主持召开外贸企业圆桌会。10家外贸企业参会,就2025年进出口情况、2026年外贸形势等议题进行交流。  张力表示,今年以来,面对异常复杂严峻的外部形势,我国外贸顶 ...[详细]
  • 秘鲁,是个怎样的国家?

    秘鲁,是个怎样的国家?   亚太经合组织(APEC)  第三十一次领导人非正式会议  即将在秘鲁首都利马举行  这也是秘鲁继2008年和2016年后  第三次举办APEC会议  对于地球另一端的秘鲁  你有多少了解?  你知 ...[详细]
  • 郭传杰:创新人才需具备高阶思维

    郭传杰:创新人才需具备高阶思维 提升科技辅导员和科学教师科学素质,是做好科学教育加法的关键支撑。高阶思维包含了哪些重要内涵?中国科学院原党组副书记兼中国科学技术大学原党委书记、国际欧亚科学院院士郭传杰对此分享观点。【纠错】 ...[详细]
  • 雷佳音获金鸡奖最佳男主角

    雷佳音获金鸡奖最佳男主角   来源:厦门广电  第37届中国电影金鸡奖最佳男主角:雷佳音《第二十条》饰韩明)。 ...[详细]
  • 为继续销售货机 波音公司向美航管局申请排放豁免

    为继续销售货机 波音公司向美航管局申请排放豁免   总台记者当地时间12月19日获悉,波音公司向美国联邦航空管理局FAA)申请豁免国际民航组织ICAO)2017年燃油效率与排放标准,以允许在2028年相关规则生效后,继续销售最多35架777F和77 ...[详细]
  • 国产激光武器大爆发,在反无人机、反导领域大有可为

    国产激光武器大爆发,在反无人机、反导领域大有可为   多款新型国产激光武器登台亮相,展示中国在前沿军事技术方面的最新成果。  激光武器是当下热门的新概念武器,尤其是高能激光武器能够瞬间摧毁目标,凭借其精确度与高效能,被誉为未来战场的关键装备,成为多个 ...[详细]